More Information
提交:2020年1月17日|得到正式认可的:2020年1月30日|发布:2020年1月31日
如何引用本文:Sarbach C,Postaire E.呼出空气中氧化应激的生物学标志物。Arch Pharm Pharma Sci。2020;4:010-012。
doi:10.29328/journal.apps.1001021
Copyright License:© 2020 Sarbach C, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
呼出空气中氧化应激的生物标记
CHRSITIAN SARBACH1和埃里克·邮局2*
1AR2I。法国勒普莱西斯·罗宾森
2法国巴黎学院科学
*通讯地址:Eric Postaire, Academy Science, Paris, France, Tel: +33 6 37 13 75 28; Email: eric.postaire@academie-sciences.fr
生物中几乎所有的能源生产都是通过氧化反应(火灾是大的氧化余烬)
Oxidation reactions produce, through complex intermediate steps, small energy packages that are more easily stored than a sudden combustion oxidation. The slow and controlled production of energy in a nuclear power plant allows its use, a massive explosion produces the result that we know ... It’s the same thing in our bodies. These reactions are never 100% efficient, not all the energy produced is used as bio fuel. Indeed, during the intermediate stages, they induce a deterioration of cells and tissues by consuming about 10% of this energy. They cause significant “wear and tear” when there is no longer any compensation for these parasitic oxidations. The latter can be excessively used in pathological situations inducing inflammatory reactions, or simply during metabolic overproduction, or even simple intense and prolonged efforts.
这一切都始于O的激活2by the energy produced in the body to give rise to “Reactive Oxygen Species”
能量激活氧气以促进“活性氧”的产生(ROS)(不当称为自由基),例如单线氧(O21),超氧化阴离子(O2-),羟基自由基(OH。)等。然后这些ROS作用于生物分子(脂质,蛋白质,DNA等)以氧化它们,从而导致细胞的衰老和(ii)慢性病理。
Precisely quantifying the importance of these parasitic reactions and thus the intensity of the “wear and tear” of the organism is an objective that has been sought but never achieved
The stakes are high because, while our genetic heritage allows us to set up enzymatic systems to repair the chemical damage caused, the phenomena of “wear and tear” are prevented by exogenous elements. It is therefore essential to quantify both normal oxidation (a regulated energy production) and pathological oxidation (fire); a distinction must be made between the two in order to provide the appropriate compensation necessary to maintain homeostasis. Everything happens like in an internal combustion engine or a steam locomotive: we must avoid the engine getting out of control, in order to preserve it and make it last longer [1].
我们可以回想起许多科学家描述的生物氧化与衰老机制之间的密切关系。已经提出了许多共同的方法,这些方法是引起与化学试剂的强烈氧化反应并评估这些反应的中和速率。在大多数情况下,这确实是一个可以消耗的底物数量或限制这些底物燃烧的能力的问题。
大火后,我们可以测量燃烧残留物 - “灰烬”
森林大火后,植被让位于灰烬和小碎片的土丘上。灰烬和小碎片的数量表明了灾难的强度。生物细胞和组织的燃烧也是如此。结合的生物分子让位于小分子,其数量也显示了毁灭性作用的程度。因此,细胞膜(例如不饱和脂肪酸)的成分被破坏成小的,通常是挥发性的分子(主要是烷烃,例如乙烷或戊烷),例如灰分和树枝。然后通过肺消除形成的挥发性化合物。
过去包含大火的灭火器的数量也反映了其重要性
最著名的灭火器是水和co2(oxygen deprivation too). But there are other less famous extinguishers that act through different mechanisms: by reducing the energy at the heart of the flame (thus the heat, thus the intensity of the flames) for example. This is the case of freons or CFCs (chlorofluorocarbons) and halons, better known as propellant gas in aerosols, refrigerant fluid - causing cooling of refrigerator pipes - and agents responsible for “holes” in the ozone layer...). By the way, how do freons destroy the ozone layer? By reducing ozone O3进入氧气2, i.e. by behaving like powerful antioxidants! They are also used in fire fighting thanks to their anti-oxidant properties.
好吧,事实证明,我们的身体能够在细胞自由基反应中产生它们。这些“内源频率”,即实际的生理灭火器,只有在细胞需要它们的生物合成的精力控制下才能产生它们[2]。它们通过减少“反应堆”(人类细胞的线粒体)的能量而以与灭火器相同的方式起作用,这限制了ROS的产生...
这些化合物也通过肺部消除。他们在健康的休息个人中没有发现。他们的注意力和在呼出的空气中存在的时间长度是他们帮助扑灭的生物火力强度的证据。因此,可以想象吸入频率(低浓度下的毒性非常低)在某些病理病例中帮助生物体?因此,我们仍然必须在呼出的空气中恢复这些化合物(灰烬和灭火器)。
Explanation of the phenomena
通过双键产生卤代烷烃的产生 通过烷基对卤素的反应生产卤代烷烃甲烷,乙烷和其他烷烃与卤素家族的前三个成员反应:氟,氯和溴。它们对碘的反应没有显着反应。烷烃与卤素的反应是一种称为卤素化的替代反应。
通过烷基的自由基卤代产生卤代烷烃The halogenation reactions of alkanes proceed by a radical mechanism.
• The reaction is initiated by an energy supply (traditionally heat or light).
•通过光子激活反应非常有效。
• Upper alkanes react with halogens according to a chain reaction mechanism: initiation, propagation and terminaison.
卤代烷烃的产生 - 热力学原理•与氟相比,氯的反应性较低,部分原因是,第一个传播步骤的活化能高于氟化步骤(16 kj.mol)。-1对于Cl2和5 kJ.mol-1对于f2)。
• The higher energy required to break the chlorine-chlorine bond during priming also influences reactivity.
•但这可能是氟化反应的总热量,这更高,可以更好地解释氟的反应性较高。
•反应能量的值与特定的生理病理学条件兼容。
Halogenated alkanes mechanism
已经研究了很少有卤代烷烃作为氟烷,异氟烷和Sevoflurane,以评估其对电子传输链活性的影响。这些化合物已显示出可逆地增加了杜松子杆状杆菌的完整心室肌细胞中NADH荧光,这表明NADH氧化受损。在全球范围内,这些卤代烷烃抑制了线粒体电子传输链的复合物I(NADH:泛酮氧化还原酶)。这种抑制作用导致线粒体膜超极化取决于F的使用1F0- ATPase和其他转运蛋白以反向模式作用。最近,几个小组报告说,在用促凋亡刺激的多种细胞处理后,有线粒体超极化的早期阶段。这已被证明是自由基的产生。
在我们的实验中获得的结果表明,内源性氟烷烃可以抑制电子转移链的复合物(表1)。这些在压力期间产生的烷烃将在自由基的产生之前,并将作为内源性抗自由基物质起作用。通过添加卤代抑制剂作为三氟甲烷以及卤代氟甲碳与超氧化物离子的可能反应,通过化学抑制扩散火焰的化学抑制作用来维持这一假设。
表格1:电子转移链。 | ||||||||||
Normal | 控制 | CCL3F | CCL2F2 | C2CL3F3 | C2CL2F4 | C2CL2F3 | C2CL3F2 | C2CL2BRF3 | C2CLF4 | |
Normal | 108 | 108 | 115 | 100 | 135 | 110 | 112 | 121 | 125 | 105 |
Serum withdrawal | 49 | 40 | 42 | 94 | 65 | 70 | 85 | 88 | 50 | |
SD1 | 7 | 5 | 4 | 8 | 12 | 9 | 5 | 6 | 355 | |
SD2 | 2 | 3 | 2 | 5 | 3 | 5 | 5 | 8 | 2 |
Effect of the halogenated alkanes on the mitochondrial cell membrane depolarization induced by serum deprivation. (Arbitrary units). Data represent the mean ± SD of a quadruplicate experiment carried out twice (SD1 and SD2).
烷烃(乙烷和戊烷)和氯氟烷(Freons)的采样,收集和确定
As the lungs eliminate these compounds, it is advisable, in a first step, to recover the exhaled air without effort, without invasion of the body. An approved machine (CE marking) has been developed for this purpose. It will be enough to breathe, without forcing, in a mouthpiece that the patient simply breathes into. The recovered cartridge will then be analyzed by gas chromatography coupled with mass spectrometry.
生物标志物浓度结果反映了您氧化/燃烧的元素的数量以及产生灭火器的能力
人体产生和使用灭火器的“灰烬”越多,火的越大,对人体细胞的损害就越大。烷烃和氯氟烷烃的结果决定了我们所谓的生物标志物,您的氧化燃烧和消防资本的结果。使用的是两者的全球化。生物标志物的概念并不是什么新鲜事物:早在1848年就确定的糖症是一种生物标志物,既可以表征糖尿病并评估抗糖尿病分子的功效。
生物标志物可以分为两类:预测性和预后生物标志物。
- 预后生物标志物可用于确定疾病的临床过程,例如生存,复发或对治疗的有利反应的可能性。
- A predictive biomarker is a biomarker that is present in the body before the onset of the disease and that predicts the clinical course of the disease. The predictive value of this biomarker may be positive or negative.
已分析的生物标志物符合这两个类别。它可用于预测病理生理障碍及其对其的反应。在静止状况下测量这种生物标志物可以确定生物体的慢性燃烧状态(例如,一组吸烟者和一组非吸烟者之间的不同)。设置动态测试对应于点燃生物火(对患者不严重),该火灾完成了先前测量的慢性燃烧,并可以测量适应急性燃烧状况的适应性。通过测量“基本状态”和“诱发状态”,我们可以更好地预测最初的生理病理学状况,并理解生物体“应对”能力的定性和定量性质。
峰(SIM,m/z = 101)三氯氟乙烷,四氟乙烷,二氯二氟甲烷的峰面积,二氯二氟甲烷在心理运动之前和之后。
Subjects | 1 | 2 | 3 | 4 | 5 |
前 Trichlorotrifluoroethane 四氟乙烷 二氯氟甲烷 |
296 2241 456 |
206 609 367 |
330 795 144 |
60 562 106 |
114 173 293 |
After Trichlorotrifluoroethane 四氟乙烷 二氯氟甲烷 |
8346 20201 269 |
217 1146 432 |
1553年 18769 764 |
336 653 208 |
316 377 260 |
- Sarbach C, Stevens P, Whiting J, Puget P, Humbert M, et al. Evidence of endogenous volatile organic compounds as biomarkers of diseases in alveolar breath. Ann Pharm Fr. 2013; 71: 203-215. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/23835018
- Sarbach C, Dugas B, Postaire E. Evidence of variations of endogenous halogenated volatile organic compounds in alveolar breath after mental exercise-induced oxidative stress. Ann Pharm Fr. 2020; 78: 34-41. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/31796267