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Introduction
The prevalence of chronic rhinosinusitis (CRS) in developed 

countries is approximately 10% - 15% of the population, 
resulting in signiϐicant costs for healthcare systems and 
national economies [1,2].

The diagnosis of CRS has traditionally been based on 
clinical parameters. Here, the presence of 2 major symptoms 
(facial/head pressure, nasal obstruction, hyposmia/anosmia, 
or purulent nasal secretion) or one major symptom and 
at least 2 minor symptoms (headache, fever, halitosis, 
cough, toothache, fatigue, and ear pressure) over a period 
of more than 12 weeks is required [3]. In addition, current 
guidelines require endoscopic and/or radiologic evidence of 
inϐlammatory tissue in addition to 2 major criteria [1,3,4]. 
Phenotype classiϐication is based on endoscopic examination 

of the nasal cavity or imaging techniques. It divides CRS 
into chronic rhinosinusitis with nasal polyps (CRSwNP) and 
chronic rhinosinusitis without nasal polyps (CRSsNP). 

However, CRSwNP and CRSsNP are not unitary syndromes 
because different pathomechanisms exist within these 
phenotypes, resulting in different forms of inϐlammation of 
the sinunasal mucosa. These are referred to as endotypes. In 
the future, this endotype classiϐication could enable a targeted, 
pathophysiologically-based therapy for CRSwNP [5]. 

For this purpose, reliable and easy-to-determine 
biomarkers have to be developed [6].

Immunology of nasal polyps

CRSwNP is characterised, among other things, by a highly 
edematous stroma with subepithelial and perivascular 

Abstract 

Background: Chronic rhinosinusitis (CRS) is a heterogeneous and multifactorial infl ammatory 
disease of the nasal and paranasal mucosa. To date, no internationally standardized uniform 
classifi cation has been developed for this disease. 

Usually, a phenotype classifi cation according to CRS with (CRSwNP) and without (CRSsNP) 
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infl ammatory pathophysiology. In this mini-review, we aim to outline the essential immunological 
processes in CRSwNP and to highlight the modern therapeutic options with biologics derived 
from this disease. 

Methods: Current knowledge on the immunological and molecular processes of CRS, 
especially CRSwNP, was compiled by means of a structured literature review. Medline, PubMed, 
national/international trial and guideline registries as well as the Cochrane Library were all 
searched. 

Results: Based on the current literature, the diff erent immunological processes involved in 
CRS and nasal polyps were elaborated. Current studies on the therapy of eosinophilic diseases 
such as asthma and polyposis are presented and their results discussed.

Conclusion: Understanding the immunological basis of CRSwNP may help to develop 
new personalized therapeutic approaches using biologics. Currently, 2 biologics (dupilumab, 
omalizumab) have been approved for the therapy of CRSwNP (polyposis nasi) in Europe.
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inϐiltration of the inϐlammatory cells. Inϐiltration of activated 
T lymphocytes occurs in all subsets of paranasal sinus disease, 
but, in nasal polyps, different T lymphocyte subsets contribute 
[1]. In recent years, the T-cell subpopulations in chronic 
sinusitis and nasal polyposis have been well characterised, 
and their biological function determined. 

In general, lymphocytes can be divided into a uniform 
B-lymphocyte population and various T-lymphocyte subsets. 
Divided into CD8 positive (CD8+) T suppressor cells and CD4+ 
T helper cells, CD4+ T cells are capable of differentiating into T 
helper (Th)1, Th2, Th9, Th17, Th22 and follicular T helper (Tϐh) 
effector cells, among others [7,8]. The balance between these 
T-helper subtypes is extremely important for the physiology of 
the mucosal immune system and can be altered by persistent 
inϐlammatory processes. In CRSwNP, there is usually an 
eosinophilic, Th2-dominated cell inϐiltration [1]. Due to the 
mucosa of the upper and lower airways being permeable to 
various antigens (e.g., allergic antigens, bacterial antigens, 
nanoparticles) because of barrier disruption, epithelial cells 
are able to activate dendritic cells (DC) in the environment by 
producing thymic stromal lymphopoietin (TSLP). Interaction 
between the OX40 receptor (also known as CD134) on naïve 
T cells and the OX40 ligand on DCs induces CD4+ T cells to 
differentiate into Th2 cells [9,10]. The further inϐlammatory 
process is characterised by interleukin (IL)-4 and IL-5 
production by these Th2 cells, as well as eosinophil cationic 
protein (ECP) and eotaxin-1/-2/-3 [11,12]. Each of these cyto- 
and chemokines has speciϐic functions. IL-4 is a mediator and 
modulator of the immune and inϐlammatory response and 
is mainly produced by Th2 cells. In addition, IL-4 is able to 
promote the differentiation of CD4+ T cells into Th2 cells, 
while inhibiting IFNγ production and Th1 response [13,14]. 
Recently, it has been shown that there is an upregulation of 
IL-4 in nasal polyps, whereas IFNγ is expressed in a decreased 
manner and does not differ signiϐicantly between nasal polyps 
and control tissues [12,15,16]. IL-5 is the major eosinophil-
activating cytokine and promotes the tissue survival of mature 
eosinophils [17,18]. IL-5 is upregulated in nasal polyps [19] 
and plays an important role in their pathogenesis. ECP and 
eotaxin promote eosinophil attraction and activation, and are 
also upregulated in nasal polyps [11,12,20]. 

IL-6, as a proinϐlammatory cytokine, is capable of inhibiting 
neutrophil recruitment [21-23]. It has also been found to 
be upregulated in CRSwNP [24,25]. However, based on the 
different published data regarding regulatory molecules of 
the IL-6 pathway, it remains unclear as to whether the IL-6 
pathway is aa part of the pathogenesis of CRSwNP.

Keswani, et al. [26] and Cho, et al. [27] found increased 
expressions of IL-32 in total tissue extracts of nasal polyps. 
IL-32 is also described as a proinϐlammatory cytokine that 
induces cells of the immune system - such as monocytes 
and macrophages - to secrete inϐlammatory cytokines [28-
33]. In this regard, IL-32 appears to play a role in various 

inϐlammatory diseases such as chronic obstructive pulmonary 
disease (COPD) and atopic dermatitis [34,35]. There are now 
9 different known isoforms of IL-32, although the functional 
differences remain unclear [29,36]. Further studies are needed 
to assess the role of IL-32 in the nasal polyps of patients with 
chronic rhinosinusitis. 

IL-25 and IL-33 are other cytokines produced in sinonasal 
epithelial cells that support the Th2 inϐlammation of CRSwNP 
[37-39]. IL-25 is upregulated in nasal polyps and increases 
thymic stromal lymphopoietin (TSLP)-induced Th2 cell 
expansion [40,41]. TSLP has previously been shown to 
have increased expression in the epithelium of patients 
with CRSwNP [42-44]. This is an IL-7-like cytokine, and, in 
combination with IL-1, mast cells are effectively activated to 
produce Th2 cytokines, including IL-5 and IL-13 [45]. 

A study from Baltimore (US) could demonstrate that 
sinonasal epithelial cells from patients with untreated 
CRSwNP show an increased baseline expression of IL-33 
compared to sinonasal epithelial cells from patients with 
CRSwNP after treatment with methylprednisolone [46]. This
 increased expression of IL-33 in untreated polyps was 
conϐirmed by another research group (47). IL-33 is a local 
alarmin for various immune cells. In addition, IL-33 is a 
chemoattractant for Th2 cells and promotes the production of 
Th2 cytokines such as IL-4, IL-5 and IL-13. Airway epithelial 
cells can produce IL-33, and its receptor is expressed by 
eosinophils and Th2 lymphocytes, among others [48]. IL-33 
plays a signiϐicant role in the maintenance of Th2-mediated 
eosinophilic inϐlammation [49], and polymorphisms within 
the IL-33 receptor gene - the interleukin-1 receptor-like 1 
(IL1RL1) gene - have been linked to the severity of CRS [50]. 
IL-25 and IL-33 are thought to link epithelial cells to the Th2 
response [37]; however, this requires further investigation.

On the other hand, the cytokines IL-25, IL-33, and TSLP 
have effects on the so-called type 2 innate lymphoid cells 
(ILC2) [51]. ILCs are lymphocyte-like cells that do not express 
allergen-speciϐic T-cell receptors. In this regard, ILC2 cells 
are considered to be the counterpart of Th2 cells, as both 
produce cytokines such as IL-5 and IL-13 [52]. Thus, ILC2s 
activated by IL-33 and IL-25 can induce eosinophilic airway 
inϐlammation [53,54]. ILC2s are abundant in nasal polyps and 
are associated with (i) increased numbers of eosinophils in 
the blood and tissues of patients with CRSwNP, (ii) clinically 
relevant worsening of TNSS (Total Nasal Symptom Score) and 
(iii) asthma comorbidity [55,56].

In addition to eotaxin-1/-2/-3, several chemokines such as 
CCL5 (RANTES), CXCL8 (IL-8), CCL23, CCL18, CXCL12 (SDF-
1α), and CXCL13 (BCA-1) have been linked to the selective 
recruitment of inϐlammatory cells to mucosal tissue in CRSwNP. 
RANTES was one of the ϐirst identiϐied chemokines to be found 
upregulated in nasal polyps [57,58]. RANTES is a member of 
the CC chemokine family and is a potent chemoattractant 
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for eosinophils and T lymphocytes, but not for neutrophils. 
It is primarily secreted by nasal epithelial cells [57,59,60]. 
Expression as well as secretion of RANTES also occurs in 
nasal polyps. Interestingly, nasal polyps with high numbers 
of eosinophils have a signiϐicantly increased RANTES gene 
and protein expression. Consequently, increased RANTES 
expression leads to increased numbers of eosinophils in the 
tissue. Thus, RANTES is also likely to play an important role in 
the mobilisation of eosinophils in nasal polyps. 

Another role in the inϐlammation of nasal polyps is played 
by CXCL8 (IL-8), which attracts neutrophils and eosinophils 
to the nasal mucosa, provided they have been previously 
activated by IL-5 [61]. However, IL-8 is considered as rather 
a nonspeciϐic marker for CRSwNP. While altered levels of IL-8 
have been identiϐied in nasal polyps [25,61-64], upregulation 
remains without clear correlation to nasal polyp formation 
[61].

Poposki, et al. [65] demonstrated a strong production of 
CCL23 in nasal polyps, which was largely colocalised with ECP, 
suggesting a predominant eosinophilic CCL23 production 
in nasal polyps. CCL23 is a chemoattractant for monocytes, 
dendritic cells and lymphocytes. It has been shown to induce 
endothelial cell migration via the chemokine receptor CCR1, 
which is also upregulated in nasal polyps [65-68]. Th2 
cytokines such as IL-4 and IL-13 have been shown to induce 
CCL23 expression in monocytes [69]. 

Signiϐicantly increased CCL18 mRNA expression was also 
found in nasal polyps and inferior turbinates [70]. In CRSwNP, 
M2 macrophages and mast cells were identiϐied to express 
CCL18, which can be induced by the Th2 cytokines IL4-, IL-13, 
and IL-10 [70]. Because the associated receptor CCR8 has only 
recently been identiϐied, the role of CCL18 in the pathogenesis 
of CRSwNP has not yet been studied in detail [71]. However, 
this discovery will help clarify the role of CLL18 in CRSwNP. 

B cells as well as IgA and IgE antibody fractions have been 
found to be elevated in patients with CRSwNP [72,73]. B cells 
express IgA, which triggers the degranulation of eosinophils 
and represents a possible link to CRSwNP [72]. In this context, 
the chemokines CXCL12 (SDF-1α) and CXCL13 (BCA-1) have 
been shown to be increased in nasal polyps. Both of them 
attract B cells. Furthermore, the receptors for SDF-1α (CXCR4 
and CXCR7) and BCA-1 (CXCR5) are also present at elevated 
levels [74]. Accordingly, in nasal polyps, the expression of 
SDF-1α and BCA-1 may be important for the recruitment and 
maintenance of B cells. In addition, the elevated IgA levels 
imply an important role of B cells in the pathogenesis of 
CRSwNP.

Clinical trials with biologicals in CRSwNP 

Biologicals include therapeutics produced by 
biotechnological methods, particularly by the gene 
transfection of cells or other organisms. The most prominent 

group of biologicals are monoclonal antibodies, which, 
in recent decades, have been increasingly used in so-
called immunotherapy. Treatment of atopy, asthma, and 
other eosinophilic disorders with monoclonal therapeutic 
antibodies has increased dramatically in recent years [75-78]. 
For severe and refractory asthmatic syndromes, an antibody 
has already been approved for therapy, one that binds free IgE 
and reduces IgE receptor density on immune cells [79]. It is 
now undisputed that a large number of patients with CRSwNP 
also have comorbid bronchial asthma, and vice versa [80-82]. 
In particular, high levels of total IgE, ECP, and IgE against S. 
aureus are associated with lower and upper respiratory tract 
comorbidity and a high rate of polyposis recurrence after 
sinonasal surgery [81,83]. Based on this comorbidity, current 
and past studies have applied antibodies known in asthma 
therapy to CRSwNP, and have achieved signiϐicant success in 
some cases.

Further targets for therapy with biologicals

By studying nasal polyp tissue for the expression of 
inϐlammatory mediators and cellular markers, new potential 
targets for targeted therapy with biologicals in CRSwNP are 
continuously being identiϐied. The same is true regarding 
experience in asthma therapy, of which the applicability to 
chronic sinusitis is being reviewed. Kimura, et al., Liu, et al. 
and other groups demonstrated increased concentrations 
of thymic stromal lymphopoietin (TSLP) in the polyp 
tissue of patients with CRSwNP [42-44]. Among these, the 
concentration was highest in allergic rhinitis with polyposis. 
Tissue dendritic cells (DC), which were also examined, 
showed an increased expression of the TSLP receptor and 
OX40 ligand (OX40L) compared with tissue from healthy 
subjects [43]. Anti-TSLP and anti-OX40L antibodies have 
already been studied in the context of asthma in clinical 
trials. They were able to reduce eosinophils in sputum, while 
anti-TSLP antibodies were also able to reduce eosinophils in 
blood [75,126]. The results of further studies with anti-TSLP 
antibodies are currently pending [127,128]. At the present 
time, there are no known clinical trials investigating TSLP or 
OX40L blockade in CRSwNP. 

In 2013 and 2014, a phase I trial of a monoclonal therapeutic 
antibody against IL1RL1 was initiated in patients with CRSwNP 
and asthma, respectively [129,130]. AMG282 prevents the 
binding of IL-33 (whose key role has been described above) 
to its receptor IL1RL1. Results of these safety, tolerability, and 
pharmacokinetics studies are currently pending, and other 
IL1RL antibodies from other pharmaceutical companies, such 
as CNTO7160, are in preclinical and clinical development. A 
phase II trial investigating AK001- currently reported as being 
a SIGLEC8 ligand or antibody - in the treatment of CRSwNP 
is not presently in the recruitment phase [131,132]. SIGLEC8 
is expressed on eosinophils, mast cells, and basophils, and 
binding of a SIGLEC8 ligand induces apoptosis in eosinophils 
[133]. This proapoptotic effect appears to be further 
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modulated by the presence of IL-33 and IL-5 [134,135]. The 
primary endpoints of the study were reduction in polyp size 
and CT polyp score (Lund-Mackay). 

Studies investigating the effect of blockade of IL-2, tumour 
necrosis-factor-alpha (TNFα), and other cytokines and 
chemokines have been conducted only for asthma or atopic 
eczema indications, but not for CRSwNP. TNFα blockade, 
which has been well studied in rheumatoid disease and 
inϐlammatory bowel disease, has led to equivocal results and 
tolerability issues in asthma [136,137]. A phase II study of 
the treatment of asthma with daclizumab, an IL-2 receptor 
alpha antibody already approved to prevent rejection after 
kidney transplantation, showed promising results in terms of 
reduction of blood eosinophilia, ECP levels, asthma symptoms, 
and use of beta-mimetics as on-demand medication [138]. To 
date, this is the only study on daclizumab in asthma. Studies 
for the indication of CRSwNP have not yet been announced. 

Conclusion
CRS is a heterogeneous group of inϐlammatory diseases 

of the mucous membranes of the nose and paranasal sinuses. 
In clinical routine, the disease is currently still divided into 
CRSsNP and CRSwNP based on phenological features. 

However, especially for CRSwNP, different patho-
mechanisms exist that lead to the expression of the polyps. 
These different endotypes exhibit differential signalling 
pathways from the process of inϐlammation initiation, 
maintenance, and chroniϐication to tissue alteration. In 
addition to the “classic” CRSwNP endotype of Th2-based and 
eosinophil-dominated inϐlammation, other endotypes exist 
that suggest different therapeutic approaches [139]. Examples 
include the use of biologics such as dupilumab (anti-IL-4/13), 
mepolizumab (anti-IL-5), or omalizumab (anti-IgE) [140,141]. 

These endotype-based treatment approaches target a 
speciϐic pathophysiological pathway and are thus based on 
a careful selection of the patient population. Under these 
conditions, positive treatment success in CRSwNP has 
been demonstrated for the above-mentioned monoclonal 
antibodies against IgE, IL-5, and IL-4/13 [139]. 

However, the addition of individualised treatment options 
to “basic therapy options” could help to realise the principle 
of “personalised medicine”, also for CRS in the future. Easily 
determinable biomarkers ([13,30] and clinical documentation 
parameters [142] are needed to establish these options in 
clinical routine, and their development is currently being 
pursued.
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